Skip to Content

Machine Learning Can Reduce Unnecessary Hospitalizations for Cancer Patients

Alexander Fuglkjær from Aalborg University presented promising results at ASH from a machine learning model designed to risk-stratify infection-related hospitalizations in cancer patients. The model identifies patients who can safely be sent home without risk of complications and shows potential for broader application across multiple cancer types.

Alexander Fuglkjær

Få tillgång

Om du är läkare, sjuksköterska eller annan vårdpersonal kan du komma åt hela artikeln genom att skapa en profil på BestPractice Nordic.

Back to top