Machine Learning Can Reduce Unnecessary Hospitalizations for Cancer Patients
Alexander Fuglkjær from Aalborg University presented promising results at ASH from a machine learning model designed to risk-stratify infection-related hospitalizations in cancer patients. The model identifies patients who can safely be sent home without risk of complications and shows potential for broader application across multiple cancer types.
Få tillgång
Om du är läkare, sjuksköterska eller annan vårdpersonal kan du komma åt hela artikeln genom att skapa en profil på BestPractice Nordic.
- Få tillgång
- Om du redan har en profil: Logga in